B.A/B.Sc 3rd Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH3CC07 (Numerical Methods)

Time: 2 Hours Full Marks: 40		
The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]		
Answer any eight questions: $8 \times 5 = 40$)
1. (i)	Define relative error.	[1]
(ii)	Obtain the relative error for computation of $u = x_1^{m_1} x_2^{m_2} x_3^{m_3} \dots x_n^{m_n}$ in terms of the	[4]
	relative errors of $x_1, x_2, x_3, \dots, x_n$	
2.	Prove that the sum of Lagrange's coefficients is unity.	[5]
3. (i)	Establish Newton-Raphson's iterative method geometrically.	[3]
(ii)	Obtain an iterative formula to find the <i>p</i> -th root of <i>a</i> .	[2]
4.	Find the inverse of the matrix $\begin{pmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ 2 & -2 & 1 \end{pmatrix}$ by Gauss-Jordan method.	[5]
5.	Using the LU-decomposition method, solve the following system of equations, $x + 2y + 3z = 14$, $2x + 5y + 2z = 18$, $3x + y + 5z = 20$.	[5]
6. (i)	If $f(x) = x^2$, then show that $\Delta^r f(x) = 0$ for $r \ge 3$ where Δ is the forward	
	difference operator.	[2]
(ii)	Prove that $\nabla^n y_k = \Delta^n y_{k-n}$ where Δ is the forward difference operator and ∇ is the	[3]
	backward difference operator.	
7.	If $f(x) = a + bx + cx^2$, prove that $\int_1^2 f(x) dx = \frac{1}{12} [f(0) + 22f(2) + f(4)].$	[5]
8.	Define degree of precision of a quadrature formula. Prove that Simpson's one-third rule is exact for all polynomials of degree not exceeding 3.	[2+3]
9. (i)	Solve the Initial Value Problem: $\frac{dy}{dx} = \frac{x^2}{1+y^2}$, $y(0) = 0$ by successive	[3]
	approximation method to obtain $y(0.25)$ correct upto three decimal places.	
(ii)	Give the geometrical interpretation of Euler's method for solving the Initial Value	[2]
	Problem: $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.	
10.	Determine the largest eigen value and the corresponding eigen vector of the mairix	
	$A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 4 \end{pmatrix}$ by Power method.	[5]